$\begin{array}{c} {\rm NAVAL~POSTGRADUATE~SCHOOL}\\ {\rm Monterey,~California} \end{array}$

EC 3550 FINAL EXAM 12/90Po

- \bullet This exam is open book and notes.
- There are four problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be sure to include units in your answers.
- Please circle or underline your answers.
- Show ALL work.

1	
2	
3	
4	
Total	

Name:	

Note: Data about fibers and devices are found in the attached tables.

- 1. Fiber #2 is operated at 820 nm.
 - (a) Calculate θ_{max} (in degrees) for this fiber.
 - (b) Calculate the fraction (in percent) of the total power that is carried in the core of the fiber.
- 2. Laser #4 is used in a fiber link that uses fiber #3. The link distance is 8.7 km and has eight splices. The splice loss is 0.3 dB when joining fibers with the same properties.
 - (a) Calculate the coupling loss at the laser–pigtail/fiber joint if the total of all of the misalignment losses are known to be 0.8 dB.
 - (b) Calculate the link's margin if the power required at the receiver is $0 \text{ dB}\mu$. (You may assume that the coupling losses from the fiber to the detector are 0 dB.)
- 3. Fiber #2 is to be used with LED #3 in a 30 Mb/s link. Fiber #2 has an index of refraction of the core of 1.46. The power required at the receiver (in dBm) is given by

$$P_R(dBm) = (8.7 \log(DR)) - 71.0$$
 (1)

where DR is in Mb/s. The coding is NRZ.

- (a) Calculate the attenuation-limited link distance if both the coupling losses and the joint losses are ignored and the aging allowance is 0 dB.
- (b) Calculate the dispersion-limited transmission distance for material dispersion.
- (c) Calculate the dispersion-limited transmission distance for modal dispersion.
- 4. Detector #1 is operated at 820 nm with a gain of 150. The signal bandwidth is 5 MHz.
 - (a) Calculate the noise-equivalent power (NEP) of this detector assuming that the signal-dependent shot noise is dominant.
 - (b) Using the result of the previous part, calculate the value of R_L required to make the thermal noise equal to 1/100 of the signal-dependent shot noise when the NEP is incident on the detector. (The noise temperature of the detector is 390K.)

FIBER SPECIFICATIONS

	Fiber #1	Fiber #2	Fiber #3	Fiber #4
Size	50/125	62.5/125	8/125	100/140
g	1.90	∞	∞	1.78
NA	0.15 (at r = 0)	0.20	0.10	0.18 (at r = 0)
α	$3.0~\mathrm{dB/km}$	$2.0~\mathrm{dB/km}$	$0.9~\mathrm{dB/km}$	$5.0~\mathrm{dB/km}$
@ 820 nm				
α	$1.0~\mathrm{dB/km}$	$1.20~\mathrm{dB/km}$	$0.5~\mathrm{dB/km}$	$2.0~\mathrm{dB/km}$
@ 1300 nm				
α	$0.8~\mathrm{dB/km}$	$0.7~\mathrm{dB/km}$	$0.4~\mathrm{dB/km}$	$0.6~\mathrm{dB/km}$
$@~1550~\mathrm{nm}$				

SOURCE SPECIFICATIONS

	Laser #1	Laser #2	LED #3	Laser #4
Wavelength	820 nm	1300 nm	820 nm	$1550 \mathrm{\ nm}$
$\Delta \lambda$	2.0 nm	$4.0 \mathrm{nm}$	10 nm	30 nm
Power at	$0.50~\mathrm{mW}$	$0.8~\mathrm{mW}$	$5~\mu\mathrm{W}$	$3.0~\mathrm{dBm}$
pigtail end				
Pigtail size	$200/300 \; \mu { m m}$	$10/125~\mu{\rm m}$	$200/300 \; \mu { m m}$	$10/125~\mu{\rm m}$
Pigtail NA	0.25	0.12	0.25	0.12
Pigtail type	Step index	Step index	Step index	Step index

DETECTOR SPECIFICATIONS

	Detector #1	Detector #2	Detector #3
Material	Silicon	Germanium	InGaAs
Responsivity	0.8 @ 820 nm	$0.2\ @\ 1300\ \mathrm{nm}$	0.2 @ 1300 nm
A/W @ M = 1		0.45 @ 1550 nm	$0.3 \ @ \ 1550 \ \mathrm{nm}$
C_d	3 pF	1 pF	2 pF
Excess noise	$M^{0.3}$	M^1	$M^{0.6}$
factor			
Bulk dark	0.10 pA	$10~\mu\mathrm{A}$	$0.1~\mu\mathrm{A}$
current			
Surface dark	0	0	0
current			